
R
t
l
I
n
i
t
U
n
i
c
o
d
e
S
t
r
i
n
g
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

L
”
\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

(
i
n
t
)
&
v
4
,

(
i
n
t
)
&
v
2
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

R
t
l
I
n
i
t
U
n
i
c
o
d
e
S
t
r
i
n
g
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

L
”
\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

(
i
n
t
)
&
v
4
,

(
i
n
t
)
&
v
2
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

R
t
l
I
n
i
t
U
n
i
c
o
d
e
S
t
r
i
n
g
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

L
”
\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

(
i
n
t
)
&
v
4
,

(
i
n
t
)
&
v
2
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

R
t
l
I
n
i
t
U
n
i
c
o
d
e
S
t
r
i
n
g
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

L
”
\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

(
i
n
t
)
&
v
4
,

(
i
n
t
)
&
v
2
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a

}

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a

}

i
f

(

(
_
B
Y
T
E
)

E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a

}

i
f

(

(
_
B
Y
T
E
)

E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

L
A
B
E
L
_
2
:

i
f

(

(
_
B
Y
T
E
)
L
e
n
g
t
h

!
=

v
3

)

{

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k
.
I
n
f
o
r
m
a
t
i
o
n
;

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

R
t
l
I
n
i
t
U
n
i
c
o
d
e
S
t
r
i
n
g
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

L
”
\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

(
i
n
t
)
&
v
4
,

(
i
n
t
)
&
v
2
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a

}

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

R
t
l
I
n
i
t
U
n
i
c
o
d
e
S
t
r
i
n
g
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

L
”
\
\
S
y
s
t
e
m
R
o
o
t
\
\
S
y
s
t
e
m
3
2
\
\
h
a
l
.
d
l
l
2
)
;

v
4

=

0
;

s
u
b
_
1
0
5
E
4
(
&
D
e
s
t
i
n
a
t
i
o
n
S
t
r
i
n
g
,

(
i
n
t
)
&
v
4
,

(
i
n
t
)
&
v
2
)
;

v
5

=

v
4

=
=

0
;

i
f

(

v
2

)

{

v
2

=

0
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

e
x
t
e
r
n

c
h
a
r

b
y
t
e
_
1
2
6
3
0
[
]
;

/
/

w
e
a
k

e
x
t
e
r
n

B
Y
T
E

b
y
t
e
_
1
2
6
4
4
[
2
0
]
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
5
8
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
_
t
e
x
t
[
6
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
P
a
g
e
[
5
]
;

/
/

w
e
a
k

e
x
t
e
r
n

c
h
a
r

a
s
c
_
1
2
6
7
8
[
2
]
;

/
/

w
e
a
k

e
x
t
e
r
n

s
i
z
e
_
t

d
w
o
r
d
_
1
2
6
8
0
;

/
/

i
d
b

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
4
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
8
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
8
C
;

/
/

w
e
a
k

e
x
t
e
r
n

i
n
t

d
w
o
r
d
_
1
2
6
9
0
;

/
/

w
e
a
k

i
f

(

(
_
B
Y
T
E
)

L
O
B
Y
T
E
(
L
e
n
g
t
h
)

=

v
3
;

Z
w
C
l
o
s
e
(
H
a
n
d
l
e
)
;

}

r
e
t
u
r
n

I
o
S
t
a
t
u
s
B
l
o
c
k

}

The Snake Campaign
Cyber Espionage Toolkit

Executive
Summary

2

Overview
One of the questions which comes up in the
months after big security whitepaper disclosures
is: where are they now? In other words,
what happened to the operators, tools, and
infrastructure which was revealed in the reports,
blog-posts, and press interviews.

Did they continue on as before, did they re-build
the disclosed infrastructure and tools, did they go
away and get jobs in another line of work?

In some cases, the disclosure had little, if any
impact on the operation. For example, after
the McAfee ShadyRAT report in 2011, there was
absolutely no change in the attacks from the
group behind this. However, when Mandiant
released their APT1 report in 2013, there was a
noticeable reduction in activity from the group –
and much of the tools and infrastructure has not
been seen since.

In the September 2010 issue of Foreign Affairs
magazine1, former US Deputy Secretary of Defense
William J. Lynn discussed a cyber-attack which
happened two years previously on the DoD’s
classified computer networks. Lynn described how
a foreign intelligence agency planted malicious
code on the networks with the aim of transferring
data to servers under their control.

The article included the now oft-quoted phrase
‘digital beachhead’ to describe what was
undoubtedly a significant compromise of US
military systems. Further reports in the press2 kept
the story alive in 2011, but since then this threat
has received remarkably little attention.

However, the operation behind the attacks has
continued with little modification to the tools and
techniques, in spite of the widespread attention
a few years ago. They use highly sophisticated
malware tools to maintain persistent access to
their targets. These tools can be used for covert
communications in a number of different modes,
some of which present significant challenges for
traditional security technologies to detect.

There are some threats which come and go, whilst
there are others which are permanent features of
the landscape. In this paper, we describe the tools
and techniques of one of the most sophisticated
and persistent threats we track. We hope this will
help victims identify intrusions and understand
their need to improve defences. Cyber security is
a collaborative effort – the operation described
in this paper again raises the bar for the security
community in their efforts to keep up with the
attackers in cyber-space

There are some
threats which come
and go, whilst there
are others which are
permanent features
of the landscape.

1 http://www.foreignaffairs.com/articles/66552/william-j-

lynn-iii/defending-a-new-domain

2 http://www.reuters.com/article/2011/06/17/us-usa-

cybersecurity-worm-idUSTRE75F5TB20110617

www.baesystems.com/businessdefence

Technical
Descritpion

4

Background
When antivirus back-end classification platforms
cannot identify a malware family for an analysed
malicious sample, they assign generic names,
such as “Trojan Horse” or “Agent”. The variant
letters are also assigned automatically, by using
hexavigesimal (or Base26) notation. That is, the
variant letters are auto-assigned starting from
“A”, followed with “B”, and so on until “Z”. Next
comes “AA”, “AB” and so on, until “ZZ”. After
that, the variant letters start from “AAA”, “AAB”
and so on, until “ZZZ”.

Back in 2008 an unknown malicious file was
discovered and auto-classified as “Agent.BTZ”,
meaning it was registered as unknown malicious
sample #1,898 in an anti-virus classification
system. It wasn’t given an actual name, only a
generic one.

Meanwhile, internally the authors behind this
malware were using their own naming systems -
with specific titles for their file components and
projects such as “snake”, “uroburos”, “sengoku”,
and “snark“ used to denote variants of their
framework.

A recent report from German security company
GData3 described a sample from the “uroburos”
variant of this framework. Their report revealed
the complex nature of this malware family, and
showed that the operation behind “Agent.BTZ” has
continued. As a result of this disclosure, we are also
releasing our own technical analysis of the threat,
including a timeline of known samples, known
Command-and- Control (C&C) servers, and other
indicators to aid investigators in discovering attacks.

Reverse engineering of recent malware samples
shows these to be much more advanced variants of
Agent.BTZ, though still sharing many similarities
and encryption methods with the original. Further
investigation allowed us to locate related samples
compiled between 2006 and 2014, and spanning
across several distinctive generations. The first
section of this report gives an overview of the
samples collected, where they were reported and
the timelines derived from their analysis.

Snake’s architecture turned out to be quite
interesting. We have identified two distinct
variants, both highly flexible but with two
different techniques for establishing and
maintaining a presence on the target system.
In general, its operation relies on kernel mode
drivers, making it a rootkit. It is designed to
covertly install a backdoor on a compromised
system, hide the presence of its components,
provide a communication mechanism with its C&C
servers, and enable an effective data exfiltration
mechanism. At the same time, Snake exposed a
flexibility to conduct its operations by engaging
these noticeably different architectures.

In the first model, the network communications
are carried out from the userland - i.e. the
area of the computer system where application
software executes. In another model, the network
communications are handled by a kernel mode
driver - i.e. the area where lower level system code
such as device drivers run. The choice of what
architecture should be used may depend on a
specific target’s environment, allowing the Snake
operators to choose the most suitable architecture
to be deployed.

In both architectures there is a kernel mode driver
installed and a usermode DLL injected by the
driver into the system processes.

In both architectures, there is both 32-bit and
64-bit code involved. In order to distinguish
between these architectures, we will call them
the usermode-centric and the kernel-centric
architectures respectively.

The remainder of this report gives a detailed
explanation of how the two Snake architectures
embed themselves in the target system and
communicate with the outside world. We have
also provided a set of technical indicators in the
Appendix to enable organisations and the security
research community to identify compromises.

www.baesystems.com/businessdefence

Snake samples
In total we have collected over 100 unique files related to this espionage toolkit. Many of these were
submitted to online malware analysis websites by victims and investigators over several years. In many cases
the source country information of the submission is available. These allow us to visualise the distribution of
countries where this malware has been seen:

Whilst this view is likely to only be the tip of the iceberg, it does give us an initial insight into the profile of
targets for the Snake operations.

Other useful visualisations of the operations come from the compile timestamps. Below is shown a table with
a count of the number of files in our sample set from recent years. Two samples compiled in late January 2014
show that this activity is ongoing.

6

Plotting the day of the week in which the samples were compiled shows a now familiar pattern for analysts of
modern cyber-attacks. The creators of the malware operate a working week, just like any other professional.
The single sample in our set which was compiled on a Saturday is an outlier, but doesn’t alter the conclusion.
Similarly, plotting the hour of the day in which the samples were compiled reveals another human pattern –
the working day. This has been adjusted to UTC+3 to show a possible fit to the operators’ local time.

#Samples compiled by hour of the day
(adjusted to UTC+4)

#Samples compiled per day of the week

30

25

20

15

10

05

0

Mon Tue Wed Thu Fri Sat Sun

25

20

15

10

05

0

0 2 4 6 8 10 12 14 16 18 20 22

www.baesystems.com/businessdefence

Usermode-centric architecture
The usermode-centric architecture of Snake is known to have been used from 2011 till 2014, with the most
recent sample compiled on January 28, 2014. With this architecture, the Snake driver is mainly used to load the
DLL module into the usermode processes, and then use that module for the communications.

One of the analysed samples exposed multiple debug messages and source control check-in logs. It is not clear
why those messages were allowed in the deployed driver - possibly an operational security lapse. However,
they give some insight into the internal structure of the source code.

For example, the analysed driver gave away the following source file names:

d:\proj\cn\fa64\common\loadlib\common/loadlib_helpers.c

d:\proj\cn\fa64\common\loadlib\win/loadlib.c

d:\proj\cn\fa64\uroboros\rk_common\libhook\common/libunhook.c

d:\proj\cn\fa64\uroboros\rk_common\libhook\ntsystem/libhook.c

d:\proj\cn\fa64\uroboros\rk_common\libhook\common/hook_helpers.c

d:\proj\cn\fa64\uroboros\rk_common\libhook\common/libhook.c

d:\proj\cn\fa64\uroboros\rk_common\libhook\common/idthook.c

.\rk_ntsystem.c

..\common\helpers\interface_s.c

..\k2\fa_registry.c

..\k2\syshook.c

The source control check-in log examples, showing the names of the developers to be ‘vlad’ and ‘gilg’:

$Id: snake_config.c 5204 2007-01-04 10:28:19Z vlad $

$Id: mime64.c 12892 2010-06-24 14:31:59Z vlad $

$Id: event.c 14097 2010-11-01 14:46:27Z gilg $

$Id: named_mutex.c 15594 2011-03-18 08:04:09Z gilg $

$Id: nt.c 20719 2012-12-05 12:31:20Z gilg $

$Id: ntsystem.c 19662 2012-07-09 13:17:17Z gilg $

$Id: rw_lock.c 14516 2010-11-29 12:27:33Z gilg $

$Id: rk_bpf.c 14518 2010-11-29 12:28:30Z gilg $

$Id: t_status.c 14478 2010-11-27 12:41:22Z gilg $

It also exposed the project name of this particular variant as ‘sengoku’:

d:\proj\cn\fa64\sengoku_bin\sengoku\win32_debug\sengoku_Win32.pdb

Now it’s time to execute the driver and see what it does.

8

Rootkit execution
When first executed, the driver creates device named \
Device\vstor32 with a symbolic link \DosDevices\vstor32.
This device is used for userland/kernel communications.

Next, it drops a DLL into the %windows% directory -
the DLL is carried in the body of the driver as a binary
chunk with
XOR 0xAA applied on top of it, so the driver decrypts it
first.

Depending on the variant, the DLL is dropped either
under a random name or a hard-coded name, such as
mscpx32n.dll.

The purpose of this DLL is to be injected into the user-
mode processes. Some variants of Snake carry the DLL
modules that can be installed as a service, to be run
within taskhost.exe or services.exe processes.

Next, the driver sets up the hooks for the following
kernel-mode APIs:

• ZwCreateThread

• ZwCreateUserProcess

• ZwShutdownSystem

After that, it calls PsSetCreateProcessNotifyRoutine() in
order to be notified whenever a new process is started.

The handlers of the hooks above along with the
notification callback allow Snake to stay persistent
on a system, being able to infect any newly created
processes, and restore its driver file in case it gets
deleted.

Another set of hooks it sets is designed to hide the
presence of the Snake components on the system:

• ZwQuerySystemInformation

• ZwQueryInformationProcess

• ZwClose

• ZwTerminateProcess

The driver then watches for all userland processes to see
if they load any web pages.

As long as the user is not using the Internet, Snake stays
dormant too, as there is no process that communicates
with the web servers.

However, as soon as the user goes online, the driver
intercepts that event and then immediately injects the
malicious DLL module into the process that initiated
connection (the browser).

Once injected, the module initiates polling from one of
the hard-coded C&C servers.

The purpose of this behaviour is to blend Snake’s
traffic with the browser traffic, bypassing the
firewalls, and keeping a low profile at the same time.
By communicating from within a process that also
communicates, even a technically savvy user will find it
challenging to detect Snake traffic among legitimate
traffic.

The reason behind such difficulty is because modern
web pages often fetch pages from the different web
servers, including such data as additional scripts, CSS
templates, advertising contents, analytics data, blogs,
social networking data, etc. When intercepted with the
purpose of analysis, such traffic may literally represent
itself hundreds of DNS and HTTP requests made when a
popular website, such as a news website is open.

Hiding a few DNS/HTTP requests among busy network
traffic allows Snake rootkit to stay unnoticed.

In order to test Snake’s communications with the C&C
servers, and still being able to clearly distinguish its
traffic, a small tool was built to generate GET request to
a web server running on the analysed system.

The tool was named as chrome.exe in order to trigger
the malware communications.

www.baesystems.com/businessdefence

Command-and-contol communications
As long as the test tool named chrome.exe did not make any requests, its memory stayed pristine. There were
no injections made by the driver.

As soon as the tool made its first GET requests, the driver immediately injected a malicious DLL module in it,
and that module started producing the following traffic:

↓

↓

↓

↓

Received command

 No. Time Source Destination Protocol Length Info

 38 44.290689000 192.168.202.131 192.168.202.2 DNS 77 Standard query 0x6ad3 A winter.site11.com
 41 44.292830000 192.168.202.2 192.168.202.131 DNS 93 Standard query response 0x6ad3 A 31.170.161.136
 45 44.518185000 192.168.202.131 31.170.161.136 HTTP 219 GET /D/pub.txt HTTP/1.1
 47 44.743999000 31.170.161.136 192.168.202.131 HTTP 474 HTTP/1.1 302 Found (text/html)

 84 45.990199000 192.168.202.131 31.170.161.136 HTTP 233 GET /D/1/f42cce984070b8ab1c0 HTTP/1.1
 86 46.216079000 31.170.161.136 192.168.202.131 HTTP 474 HTTP/1.1 302 Found (text/html)
 94 46.525887000 192.168.202.131 31.170.164.249 HTTP 217 GET /? HTTP/1.1
101 46.939359000 192.168.202.131 192.168.202.2 DNS 82 Standard query 0x5ae5 A swim.onlinewebshop.net
102 46.940914000 192.168.202.2 192.168.202.131 DNS 98 Standard query response 0x5ae5 A 83.125.22.197
107 47.287205000 192.168.202.131 83.125.22.197 HTTP 224 GET /D/pub.txt HTTP/1.1
109 48.219805000 83.125.22.197 192.168.202.131 HTTP 330 HTTP/1.1 200 OK (text/html)

118 48.813394000 192.168.202.131 192.168.202.2 DNS 82 Standard query 0x5362 A july.mypressonline.com
119 48.814837000 192.168.202.2 192.168.202.131 DNS 98 Standard query response 0x5362 A 83.125.22.197
123 49.131675000 192.168.202.131 83.125.22.197 HTTP 224 GET /D/pub.txt HTTP/1.1
125 49.780323000 83.125.22.197 192.168.202.131 HTTP 330 HTTP/1.1 200 OK (text/html)

137 50.536285000 192.168.202.131 31.170.161.136 HTTP 220 GET /D/77568289 HTTP/1.1
139 50.762073000 31.170.161.136 192.168.202.131 HTTP 474 HTTP/1.1 302 Found (text/html)
147 51.101706000 192.168.202.131 31.170.164.249 HTTP 217 GET /? HTTP/1.1
154 51.548661000 192.168.202.131 83.125.22.197 HTTP 225 GET /D/77568289 HTTP/1.1
163 52.014730000 192.168.202.131 83.125.22.197 HTTP 225 GET /D/77568289 HTTP/1.1
165 52.637958000 83.125.22.197 192.168.202.131 HTTP 679 HTTP/1.1 200 OK (text/html)

The domain names of the C&C servers it relies on are
hard-coded in the body of the malware. Some examples
are given below, and a full list of known domains is
given in the Appendix D:

• north-area.bbsindex.com

• winter.site11.com

• swim.onlinewebshop.net

• july.mypressonline.com

• toolsthem.xp3.biz

• softprog.freeoda.com

• euassociate.6te.net

As seen in the traffic dump above, the malware first
resolves the domain name of its C&C.
Next, it fetches a file /D/pub.txt, and expects the server
to respond with a string “1”, acknowledging it’s active:

03:52:06 1336: Connect swim.onlinewebshop.net
type(0)... OK

03:52:06 1336: GET /D/pub.txt

03:52:07 1336: Http status: 200

03:52:07 1336: recv 1/1

03:52:07 DownLoad 1 command(s)

Once acknowledged, it asks the server for a command,
and the server returns a new command to execute:

03:52:11 1404: Connect swim.onlinewebshop.net
type(0)... OK

03:52:11 1404: GET /D/77568289

03:52:12 1404: Http status: 200

03:52:12 1404: Command for all

03:52:12 1404: recv 346/346

03:52:12 Command Id:303149772662877808(130201
837456870000)[13:42:25 05/08/2013]

10

The command it receives from C&C above (swim.onlinewebshop.net) is encrypted. In order to decrypt it, the
malware first applies the XOR mask to the bytes that start from offset 0x40:

1dM3uu4j7Fw4sjnbcwlDqet4F7JyuUi4m5Imnxl1pzxI6as80cbLnmz54cs5Ldn4ri3do5L6g

s923HL34x2f5cvd0fk6c1a0s

An identical XOR mask was also used by Agent.BTZ.

Next, it calculates and confirms a CRC32 checksum within the command, further decrypts the data by using the
Number Theory Library (NTL), and makes sure the command is destined to the current host by matching the ID
field in it.

Once fully decrypted, the command will be visible in clear text. In an example below, the received command is
to add a new C&C server marketplace.servehttp.com - that name is not present in the initial hard-coded list, so
it’s added via command:

00000000 74 E4 7E F4 9E 8E D8 65 B3 06 EB B3 08 EA 3E 84 t.~....e......>.
00000010 D5 A1 D2 ED 5D 0C 89 91 65 DE 4E B6 0C E2 2C 39 ]...e.N...,9
00000020 A9 8A 3D B9 0B C0 E6 12 E9 F9 81 0A CF C3 D9 0C ..=.............
00000030 5A 6A 15 B4 00 00 00 00 01 00 00 00 00 00 00 00 Zj..............
00000040 31 64 4D 33 75 75 34 6A 37 46 77 34 73 6A 6E 62 1dM3uu4j7Fw4sjnb
00000050 13 3D D4 DA 90 F4 BA 35 1C 36 4A 79 69 96 B1 D4 .=.....5.6Jyi...
00000060 D8 F1 07 6F 7B CC C4 68 9D B7 86 3E 4B 6F BA FB ...o{..h...>Ko..
00000070 6E AB 7B 29 32 FD 7C 75 B9 DF 7F C0 0C 81 2D 14 n.{)2.|u......-.
00000080 23 F9 A4 DF D3 F1 18 97 4D CD 71 D0 52 D6 A2 E9 #.......M.q.R...
00000090 FF 58 30 3D A8 8A DD 4D 3F DB AE 9A F5 07 3B 21 .X0=...M?.....;!
000000A0 67 5A 34 22 AD 60 CB DD A4 E2 B5 77 A1 6A 4C 2E gZ4”.`.....w.jL.
000000B0 C8 75 91 01 CA 5B B3 28 3E 55 C8 68 B2 2C 40 E4 .u...[.(>U.h.,@.
000000C0 02 A9 64 8B 80 BD 0E AB 58 25 00 40 6E AB DD 5B ..d.....X%.@n..[
000000D0 D1 0A 32 AE 4A E2 60 79 BE 47 10 AE 73 35 4C 65 ..2.J.`y.G..s5Le
000000E0 06 3C AA D8 F0 49 52 DB 22 A5 0D 7B 2B 4D 8A D1 .<...IR.”..{+M..
000000F0 21 5C 62 11 E6 13 E2 CA AF A5 4F 5A 9E 1C AF AE !\b.......OZ....
00000100 C4 1C 36 4D A0 E4 72 3A CD 07 A3 01 AE E6 0A 84 ..6M..r:........
00000110 D4 8B 03 FB 0D 68 19 FD 86 71 8E FD FC 2D C3 5C h...q...-.\
00000120 49 A4 E3 40 9B 77 16 BA 86 4A DD 0D 15 7D B1 BD I..@.w...J...}..
00000130 A9 54 C3 F6 E4 05 72 B1 E6 B7 A5 A7 31 CE 29 8B .T....r.....1.).
00000140 EF 95 58 2A 2E 48 0E 7A BD B8 B7 CE 48 32 E2 48 ..X*.H.z....H2.H
00000150 2E E2 94 65 F0 19 FC F5 ED 1B ...e......

00000000 49 44 33 30 33 31 34 39 37 37 32 36 36 30 38 34 ID30314977266084
00000010 37 38 30 38 23 30 36 20 26 6D 61 72 6B 65 74 70 7808#06 &marketp
00000020 6C 61 63 65 2E 73 65 72 76 65 68 74 74 70 2E 63 lace.servehttp.c
00000030 6F 6D 26 2F 55 50 44 41 54 45 2F 26 63 65 72 74 om&/UPDATE/&cert
00000040 31 30 32 34 26 55 6E 37 37 6B 6F 23 73 26 26 26 1024&Un77ko#s&&&
00000050 0A .

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
↓ Traffic is decrypted

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

www.baesystems.com/businessdefence

Once decrypted, the malware interprets the received command, as reflected in the malware log below (the
new C&C server address is highlighted in it):

03:52:12 Del after 0

03:52:12 Run instruction: 6 ID:303149772147483647(13:41:34 05/08/2013)

03:52:12 Add address &marketplace.servehttp.com&/UPDATE/&cert1024&Un77ko#s&&&

03:52:12 Finish run instruction.

After that, the malware connects to the new C&C, asking it for another command:

03:52:13 1400: Connect marketplace.servehttp.com type(0)... OK

03:52:13 1400: GET /IMAGE/pub.html

03:52:15 1400: Http status: 200

03:52:16 1400: recv 1/1

03:52:16 DownLoad 1 command(s).

The command it receives is called UpLoad, so it uploads all the collected logs to the server, and then cleans out
those logs:

03:52:16 UpLoad: http upload 4 file(s).

03:52:17 652: Connect marketplace.servehttp.com type(0)... OK

03:52:17 652: GET test file /IMAGE/pub.html

03:52:17 652: POST /IMAGE/2/55198739672286404661840843638320033

03:52:18 652: C:\WINDOWS\$NtUninstallQ812589$\gstat32.bin 310[B]

03:52:19 652: Http Status:200

03:52:19 652: POST /IMAGE/2/32773318678423920155243775957661252

03:52:19 652: result.xml 1278[B]

03:52:20 652: Http Status:200

03:52:21 652: POST /IMAGE/2/41535327538451061594793127961089611

03:52:21 652: C:\WINDOWS\$NtUninstallQ812589$\mtmon32.sdb 655[B]

03:52:22 652: Http Status:200

03:52:22 652: POST /IMAGE/2/35192812459183876172895945534862460

03:52:22 652: C:\WINDOWS\$NtUninstallQ812589$\mtmon.sdb 748[B]

03:52:23 652: Http Status:200

12

The files it uploads are stored inside its home directory %windows%\$NtUninstallQ[random]$, where [random]
is a random number.

For example, Snake’s home directory could be C:\WINDOWS\$NtUninstallQ812589$.

The files within that directory are used by the rootkit to store configuration and log data.

When decrypted with the same XOR key that was used by Agent.BTZ, these files expose the following contents:

• mtmon.sdb - C&C communication log that looks as the logs shown above.

• mtmon_.sdb - installation log, that shows infected processes (Internet Explorer), the random name of
the dropped DLL (e.g. kbdfaori.dll), log directory, and the registry entry ShellCore that stores other
configuration details:

03:52:02 TVer=1.2

03:52:02 Parent:C:\Program Files\Internet Explorer\IEXPLORE.EXE

03:52:02 ver 3.2.0.0a inj dll K:0 PID:712,

C:\WINDOWS\system32\kbdfaori.dll,

hostID:ea5cfa5ea1681bd6(16887647987074341846)

03:52:02 C:\WINDOWS\$NtUninstallQ812589$,

Temp:C:\WINDOWS\$NtUninstallQ812589$\SPUNINST\Temp

03:52:02 REG:Software\Microsoft\Windows\CurrentVersion\ShellCore

03:52:02 ModuleStart: 03:51:42

• scmp.bin - pipe server log that shows its assigned name (COMPUTERNAME is the name of the test system)
and what processes it operates from:

02:04:24 TVer=1.6

02:04:24 SPCOMPUTERNAME: Pipe server thread start

02:04:24 Inj[1620]:explorer.exe

03:51:42 Inj[712]:iexplore.exe

• ucmp.bin - another pipe server log:

02:04:44 TVer=1.6

02:04:44 UPCOMPUTERNAME: Pipe server thread start

www.baesystems.com/businessdefence

Inter-process communications
Analysis of the sample reveals that it supports 3 modes of fetching C&C commands.

• In the first mode, it relies on Windows Internet (WinINet) APIs, such as HttpOpenRequest(), HttpSendRequest(),
InternetReadFile(), etc.

• In the second mode, it uses Windows Sockets 2 (Winsock) APIs, such as WSAStartup(), socket(), connect(), send(),
etc.

• In the third mode, it works in the ‘pipe server’ mode, when it passes the web requests it is interested in (as a
client) to the pipe server that runs within Windows Explorer (explorer.exe) and/or Internet Explorer (iexplore.exe)
processes.

Memory pipes is a common mechanism for Inter-Process Communications (IPC). When the pipe server reads such requests
from the pipes, it performs the web request on behalf of a client by using WinINet APIs, so it effectively serves as a proxy.

The diagram below demonstrates the last, ‘pipe server’ mode of Snake operation:

14

The diagram illustrates the operation steps 1-4:

1. First, the malicious driver with the embedded DLL module injects that DLL into a system process,
such as services.exe; once loaded, the DLL will function in the ‘pipe server’ mode.

2. As soon as the driver detects a usermode process that goes online (e.g. a browser), it will inject malicious DLL
module into it; depending on the operational mode, the DLL may start communicating with C&C directly.

3. In the ‘pipe mode’ of operation, the injected DLL will start communicating with the pipe server by sending
messages into the established inter-process communication pipes.

4. Once the task of communication with C&C is delegated to the pipe server, it will start communicating with
the C&C, bypassing the host-based firewalls that keep an infected system process in a white-list.

The reason behind the pipes usage is to ‘legitimise’ the
outbound web requests, forcing them to originate from
the host firewall-friendly system services.

Pipe server is a special mode of the injected DLL. In
order to switch into that mode, a dedicated thread is
spawned to listen for IPC messages received through
the pipes. The memory pipes used by Snake are named
as:

• \\.\Pipe\SP[COMPUTERNAME]

• \\.\Pipe\UP[COMPUTERNAME]

where [COMPUTERNAME] is the name of the host
computer.

Apart from GET/POST requests, the pipe clients
(infected usermode processes) may also ask the pipe
server to perform other operations on their behalf,
such as saving data into a temporary file, copy/delete
files, save configuration data into the registry under the
aforementioned ShellCore value.

This delegation of tasks is designed to keep infected
processes under the radar of the behavioural analysis
tools for as long as possible. Another reason is to
overcome account restrictions imposed on a browser

process in order to be able to write into files/registry.

To delegate different types of tasks, the clients send
messages to the pipe server using the following task
identification headers:

• DATA

• CREATE

• CMD

• POST

• GET

• DEL

• REGISTR

• COPY

www.baesystems.com/businessdefence

The usermode component of Snake communicates with
its kernel-mode driver via a device called \\.\vstor32
(created under kernel as \Device\vstor32). In its commu-
nication protocol with the driver it uses the IOCTL code
of 0x222038.

To write data, it opens the device with CreateFile(“\\.\
vstor32”), then calls DeviceIoControl() API on its handle
with IOCTL code of 0x222038.

Configuration parameters along with the initial set of
domain names are hard-coded within the body of the
DLL. However, the data appears to be defined in the
structures, so it is very likely the DLL could be generated
by a stand-alone builder that ‘patches’ the DLL with the
new/updated list of C&C.

Analysis of the commands performed by the malware
suggests the following capabilities:

• Scan the network for the presence of other
hosts (maximum 1 hour is allocated for this
task)

• Set maximum upload file size

• Go ‘stealth’ mode for the specified number of
days - Snake will not initiate any connections
during that time

• Run specified shell commands and collect the
output logs for further delivery

• Modify settings stored with the registry key
HKLM\Software\Microsoft\Windows\CurrentVer-
sion\ShellCore

• Search for files

• Upload specified files

• Add new C&C domains

• Update the driver with a new version

• Download files

• Run specified executable files

• Set self-deactivation timeout

• If the virtual partition \\.\vd1 exists, copy all
Snake logs into that partition

Together, these commands provide complete backdoor
functionality, allowing remote attacker full control over
the compromised system.

The ability to update the driver and then rely on its
communication capabilities means that the components
of Snake are flexible, making possible the existence of
the hybrid (kernel-centric and usermode-centric) archi-
tectures.

For example, the virtual partitions are used by ker-
nel-centric Snake variants, where the kernel-mode driver
is responsible for the communications. If such a driver is
installed via an update, the usermode component can
be instructed to delegate the file upload task to the
driver by copying all the necessary logs into the shared
virtual partition, physically located on the compromised
host and thus, accessible from kernel.

16

Kernel-centric architecture
This particular architecture relies on a kernel-mode driver to carry out the network communications. The usermode DLLs
are still injected into the system processes to perform high-level tasks.

The delivery mechanism is not known: it may be distributed via a thumb-drive, a phishing email attachment, or be deliv-
ered via an exploit across the network (e.g. by using the reconnaissance tool that is explained later).

Infection starts from a dropper penetrating into the compromised system where it is allowed to run. Once executed, the
dropper installs the kernel mode driver in a pre-defined location. The dropper itself is 32-bit, so it will run both on 32-bit
and 64-bit Windows OS (in WoW64 mode). On a 32-bit OS, it will install a 32-bit driver. On a 64-bit OS, it will install a 64-
bit driver.

The analysed 32-bit dropper creates a driver in the following location:

%windows%\$NtUninstallQ817473$\fdisk.sys

However, different samples may use a different path and driver file name. For example, some samples exposed these file-
names:

fdisk_32.sys, A0009547.sys, or Ultra3.sys. The filename of the dropper could be rkng_inst.exe or fdisk_mon.exe.

Registration
TOnce executed, the driver first makes sure it is registered under a pre-defined name, such as Ultra3.

Other samples may have a different registration name, such as ~ROOT. The registration is ensured with creation of the
following registry entries:

ErrorControl = 0
Group = “Streams Drivers”
ImagePath = %windows%\$NtUninstallQ817473$\fdisk.sys
Start = 1 [SYSTEM]
Type = 1

in the newly created registry key

HKEY_LOCAL_MACHINE\System\CurrentControlSer\Services\Ultra3

The driver then flags the following events with the notification purposes:

\BaseNamedObjects\{B93DFED5-9A3B-459b-A617-59FD9FAD693E}

\BaseNamedObjects\shell.{F21EDC09-85D3-4eb9-915F-1AFA2FF28153}

The rootkit then places a number of the hooks.

www.baesystems.com/businessdefence

System hooks
The first API it hooks is IoCreateDevice(). The installed
hook handler calls the original API and then checks
if the name of the device is netbt or afd. If so, it will
install a TDI filter driver. If the device name is Null,
Beep, tcpip or Nsiproxy, it will activate itself by enabling
its hooks designed to hide the presence of Snake on a
system, set up its access control lists and the messaging
system.

In order to hide its components, the driver hooks the
following APIs:

• ZwQueryKey

• ZwEnumerateKey

• ZwCreateKey

• ZwSaveKey

• ZwReadFile

• ZwQuerySystemInformation

• ZwQueryInformationProcess

• ZwClose

• ZwTerminateProcess

• ZwShutdownSystem

• ObOpenObjectByName

For example, the hook handlers of the registry-related
APIs will block access to the registry entries that contain
the name of the driver. In one example, the rootkit
blocks access to registry entries that contain the strings
“Ultra3” and “~ROOT”.

The ZwReadFile() hook handler will block access
to the home directory where the rootkit keeps its
file. In one of the analysed kernel-centric Snake
samples the home directory was hard-coded as
%windows%\$NtUninstallQ817473$, so it blocked file
read access from that directory.

The ZwClose() hook handler is used to inject the DLL
module into the userland processes.

The hook handler for ZwTerminateProcess() checks
if the process being shut down is svchost.exe. If so, it
considers it to be a system shutdown, so it unloads its
usermode DLL and deactivates its own network drivers,
just like it does when its ZwShutdownSystem() hook
handler gets invoked.

The ObOpenObjectByName() hook is designed to hide
the presence of its virtual partitions (described later).

To encrypt data stored on its virtual partitions, the
driver sets a hook for another API:

IofCallDriver()

To re-infect the usermode process svchost.exe and to re-
enable its network drivers, the rootkit hooks these APIs:

• ZwCreateThread

• ZwCreateUserProcess

In one of the
analysed kernel-
centric Snake samples
the home directory
was hard-coded... so
it blocked file read
access from that
directory.

18

WFP Callout driver
Snake then proceeds to the task of deep packet inspection and modification.

In order to accomplish it, it registers a callout driver for Windows Filtering Platform (WFP), an architecture first introduced
with Windows Vista and nowadays normally used by antivirus and/or intrusion detection systems to inspect/block malicious
traffic.

Snake sets filters at the layers FWPM_LAYER_STREAM_V4 and FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4 in the TCP/IP
stack, so that its callout driver is notified whenever a TCP connection is established by a browser. When that happens, the
rootkit triggers an event named \BaseNamedObjects\wininet_activate. When the data arrives, it is intercepted with the
FwpsCopyStreamDataToBuffer0() API, and then scanned for the presence of the hidden commands from C&C.

The driver inspects bidirectional network data on a per stream basis, as it’s located right on the stream data path. An
ability to manipulate data streams is provided with the packet injection logic below, allowing Snake to covertly insert
traffic destined to its C&C servers:

int __stdcall stream_inject(int flowHandle, int calloutId, int layerId)
{
 int iRet = 0;
 int ntStatus = FwpsAllocateNetBufferAndNetBufferList(m_hNdisNblPool, 0, 0, 0, 0, &iRet);
 if (!ntStatus)
 {
 ntStatus = _FwpsStreamInjectAsync(m_hInjection,
 0,
 0,
 flowHandle,
 calloutId,
 layerId,
 20,
 3,
 iRet,
 0,
 sStreamInjectCompletion,
 0);
 if (!ntStatus)
 {
 iRet = 0;
 }
 if (iRet)
 {
 FwpsFreeNetBufferList(iRet);
 }
 return ntStatus;
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

In order to qualify as a browser, the usermode process must have any of the following names:

bool isBrowserProcess(const wchar_t *szProcName)
{
 return !wcsicmp(szProcName, L”iexplore.exe”) ||
 !wcsicmp(szProcName, L”firefox.exe”) ||
 !wcsicmp(szProcName, L”opera.exe”) ||
 !wcsicmp(szProcName, L”netscape.exe”) ||
 !wcsicmp(szProcName, L”mozilla.exe”) ||
 !wcsicmp(szProcName, L”chrome.exe”);
}

01
02
03
04
05
06
07
08
09

www.baesystems.com/businessdefence

TDI Filter
In addition to WFP, Snake also hooks the Transport Driver Interface (TDI) network routines by setting itself up as a TDI
filter driver.

TDI is considered deprecated and will be removed in future versions of Microsoft Windows, but it’s still supported on
Windows 7.

Being registered as a TDI driver on the device stack, Snake hooks TCP calls. This way it intercepts all requests along with
their parameters via IRP (IO request package) hooks.

By ‘sniffing’ all the requests, it can now inspect the traffic, looking for and then parsing GET/POST HTTP requests and also
SMTP communications, in order to distinguish commands addressed to itself.

If the rootkit detects that the OS version is pre-Vista (e.g. Windows XP) or Windows Server 2008 (e.g. Windows Server
2003), it will invoke FwpsStreamInjectAsync0() API in order to generate outbound requests.

Whenever the client establishes connections, the TDI driver will also ‘pulse’ the \BaseNamedObjects\wininet_activate event,
just like the WPF driver’s component of it, in order to notify the userland service about the event.

The data that the driver intercepts, along with the important notifications, is passed to the userland DLL to be processed.
If the data contains commands from C&C, the DLL module is expected to execute them and report results back to the
driver to be delivered back to C&C.

NDIS Hooking
For NDIS versions 5.X, Snake rootkit contains code that installs NDIS filter intermediate driver.

This driver is set up above a miniport driver (a driver that communicates with the physical device) and below a protocol
driver (a driver that implements a protocol, e.g. TCP/IP).

The driver is registered with NdisIMRegisterLayeredMiniport() API.

After that, the drivers hooks the following exports within ndis.sys:

• NdisIMRegisterLayeredMiniport

• NdisTerminateWrapper

The rootkit contains code that installs NDIS filter driver for NDIS 6.0 and above:

Unique name: {c06b1a3b-3d16-4181-8c8d-7015bfc5b972}

User-readable description: filter_c06b1a3b

NDIS filter driver configuration is stored in the registry entry:

HKLM\SYSTEM\CurrentControlSet\Control\Network\{4d36e974-e325-11ce-bfc1-08002be10318}

20

The driver is registered with NdisFRegisterFilterDriver()
API.

After that, the drivers hooks the following exports
within ndis.sys (for NDIS 6.0):

• NdisFRegisterFilterDriver

• NdisFDeregisterFilterDriver

• NdisSetOptionalHandlers

• NdisFSetAttributes

Another set of exports it attempts to hook in ndis.sys
(for NDIS 6.0) is:

• NdisMRegisterMiniportDriver

• NdisMDeregisterMiniportDriver

• NdisMIndicateReceiveNetBufferLists

• NdisMRestartComplete

• NdisMPauseComplete

With the hooks installed, whenever the network
adapter driver attempts to register to NDIS, or
whenever there is an attempt to install NDIS
intermediate driver or NDIS filter driver, the hook
handlers will register Snake’s own MiniportXxx
functions with the NDIS library.

With its own miniport handler functions, it can send/
receive data by using a private TCP/IP stack, bypassing
all firewall hooks, and making its open ports invisible to
scanners.

www.baesystems.com/businessdefence

NDIS Protocal driver
The Snake rootkit registers itself as Network Driver Interface Specification (NDIS) protocol driver.

To send the data back, the protocol driver defines the
data in a list of NET_BUFFER_LIST structures, and then
passes them to NDIS by calling NdisSendNetBufferLists().

NDIS, in turn, calls the miniport driver’s
MiniportSendNetBufferLists() function to forward the
data to an underlying miniport driver.

NDIS Protocol
Driver NDIS

NdisMIndicateReceiveNetBufferLists()

ProtocolReceiveNetBufferLists()

Miniport
Driver

Intercepting Network Data
Whenever the underlying miniport driver
receives data from the network, it calls NDIS
by invoking a data receive indication function
NdisMIndicateReceiveNetBufferLists().

When that happens, NDIS invokes Snake’s hook function
(ProtocolReceiveNetBufferLists) to process the received
data.

Sending Network Data

NDIS

MiniportSendNetBufferLists()

 NdisSendNetBufferLists()

Miniport
Driver

NDIS Protocol
Driver

Being able to fully manipulate traffic at 3 different levels (NDIS protocol driver, TDI Driver, and WPF callout driver), Snake
is able to ‘inject’ the traffic into existing communications to reach out to external components, and at the same time
parse all incoming traffic to detect traffic addressed to itself:

22

Dead beef on a cool base
As the driver intercepts all connections (e.g. on TDI_RECEIVE TDI event or ClientEventReceive() event notification triggered
through its TDI Filter Driver), it parses all incoming HTTP and SMTP traffic to see if it can be authenticated as Snake traffic.

The authentication is implemented by decrypting the data and making sure it starts with the markers 0xDEADBEAF and
0xC001BA5E (which appear to derive from ‘DEAD BEEF’ and ‘COOL BASE’).

Here are specific steps:

• The data it accepts should start from a 10 byte signature with the following rules:

• the first 8 bytes must all be ASCII characters, the parser calculates their total sum (sum):

for (int i = 0; i < 8; i++)
{
 if (*(BYTE *)ptrBuffer <= 32 ||
 *(BYTE *)ptrBuffer >= 128)
 {
 return 0; // if not ASCII, quit
 }
 sum += *(BYTE *)ptrBuffer; // add to sum
 ++ptrBuffer; // advance buffer pointer
}

01
02
03
04
05
06
07
08
09
10

• 9th byte must be equal to sum / 26 + 65

• 10th byte must be equal to 122 - sum % 26

if ((*(BYTE *)ptrBuffer != sum / 26 + 65) ||
 (*(BYTE *)(ptrBuffer + 1) != 122 - sum % 26))
{

result = 0;
}

01
02
03
04
05

• Starting from the 11th byte, the data must be base64-encoded; the parser decodes that data

base_64_decode(abyBuffer + 10,
 &ptrDecoded,
 iMaxLength - 10);

01
02
03

• Once decoded, the decrypted data should contain the aforementioned markers:

.text:F6751426 lea eax, [ebp+dwMarker] ; return marker here

.text:F6751429 push eax

.text:F675142A mov ecx, [ebp+buf_len] ; traffic’s buffer length

.text:F675142D push ecx

.text:F675142E mov edx, [ebp+abyBuffer] ; traffic’s buffer pointer

.text:F6751431 push edx

.text:F6751432 call decrypt_traffic ; decrypt traffic first

.text:F6751437 test eax, eax

.text:F6751439 jz short exit ; if failed, exit

.text:F675143B mov eax, [ebp+dwMarker] ; check the returned marker

.text:F675143E cmp eax, _DEADBEAF ; _DEADBEAF dd 0DEADBEAFh

.text:F6751444 jnz short exit ; if not 0xDEADBEAF, exit

.text:F6751446 cmp [ebp+dwNextDword], 0C001BA5Eh ; check next DWORD

.text:F675144D jnz short next ; if not 0xC001BA5E, exit

• When the traffic is authenticated, its contents is then parsed by using “GET”, “POST”, “http://”, “HTTP/”,
“Content-Length”, “Connection”, “close” tags, in order to retrieve HTTP requests

• SMTP traffic is also parsed, only by using “MAIL “, “RCPT “ tags in order to retrieve SMTP characteristics

www.baesystems.com/businessdefence

By observing such behaviour, one might wonder why
the driver is expecting HTTP or SMTP clients? Why does
it act like HTTP/SMTP server processing client traffic,
and serving back normal responses as per the protocol?

For example, in HTTP the driver will respond with
messages like “HTTP/1.1 200 OK” or “HTTP/1.1 500
Server Error”.

For SMTP traffic, it communicates back normal SMTP
server responses, such as “250 Sender OK”, “503 Bad
sequence of commands”, etc.

The reason behind such behaviour is that the driver is
acting in this mode like a proxy, routing requests from
other infected hosts to a remote C&C server.

Another opportunity this mode unlocks is a peer-
to-peer network mode with no centralised C&C.
The infected hosts are capable of transferring the
following peer-2-peer commands defining fragment
size, reliability parameters, new peer information, peer
impersonation flags, etc.:

• frag_size

• frag_no_scrambling

• peer_frag_size

• read_peer_nfo

• write_peer_nfo

• imp_level

• reliable_n_tries

• reliable_keepalive

• reliable_rtt

• reliable_padding

• reliable_no_keepalive

• m2b_raw

• psk

• key

Once the incoming data is authenticated and decrypted,
the driver passes it to the DLL by using memory pipes.

For example, on HTTP traffic arrival it may send traffic
data into a memory pipe \Device\NamedPipe\isapi_http,
and then, send a received peer-2-peer command
message write_peer_nfo=[IP_ADDRESS:PORT]0frag_
no_scrambling=Y0 into another memory pipe called \
Device\NamedPipe\isapi_dg.

In order to log its activity, the driver writes log data into
the pipe \Device\NamedPipe\isapi_log, so that the DLL
could log the data into the log files.

Full list of the named pipes used for communications is
provided below:

• \Device\NamedPipe\isapi_http

• \Device\NamedPipe\isapi_log

• \Device\NamedPipe\isapi_dg

• \Device\NamedPipe\services_control

Messages submitted into the pipes are wrapped into
the structures. The structures appear to contain headers
to allow the pipe server, that runs within an infected
userland module, to identify the messages first and
then unwrap the structures accordingly.

For example, the message headers could be:

• domc.np

• frag.np

Once received from the pipes and unwrapped/decoded,
the data is then handled by the usermode DLL as per
the data intention - whether it’s a traffic sniffing task,
a peer-2-peer client logic, a logging task, or a task of
saving received files into the virtual volumes.

24

Virtual file volumes

The driver creates virtual file volumes for encrypted storage of its files and configuration data:

• \\.\Hd1

• \\.\Hd2

The volumes are mounted from the virtual file systems RawDisk1 and RawDisk2.

The first partition is created with the following steps:

• the driver creates a 100Mb (0x6400000 bytes) file %windows%\$NtUninstallQ817473$\hotfix.dat by calling
IoCreateFile() API

• then it creates a section object with the flags SEC_COMMIT and SEC_NOCACHE (0x18000000) by calling
ZwCreateSection(); the flags mean the file is mapped into memory, the entire range of pages will be committed

• next, it maps a view of the created section into the virtual address space by calling ZwMapViewOfSection()

• finally, it creates device \Device\RawDisk1 from the section map and mounts it as \\.\Hd1

The hook installed by the rootkit on IofCallDriver() API provides on-the-fly data encryption/decryption whenever that data
is written to or read from the volume. The encryption algorithm is based on CAST-128, with the hard-coded key stored in
the rootkit body.

As a result, whenever the data is saved into the volume Hd1, it will be scrambled on-the-fly, and reflected in the persistent
storage file hotfix.dat, which is physically located within the rootkit’s ‘home’ directory:

Z:\WINDOWS\$NtuninstallQ817473$>dir

 Volume in drive Z has no label.

 Volume Serial Number is 2479-98AC

 Directory of Z:\WINDOWS\$NtuninstallQ817473$

13/02/2014 04:47 PM <DIR> .

13/02/2014 04:47 PM <DIR> ..

03/02/2014 01:57 PM 210,944 fdisk.sys

13/02/2014 04:47 PM 104,857,600 hotfix.dat

 2 File(s) 105,068,544 bytes

 2 Dir(s) 8,406,433,792 bytes free

www.baesystems.com/businessdefence

Analysis of the hotfix.dat file contents reveals it’s a fully encrypted file with flat entropy. Thus, it is not possible to reveal
the contents of the Snake’s volume by accessing the contents of this file (unless the encryption is broken, that is).

Enlisting the contents of the created volume is possible, along with creating files on it:

C:\>echo Test > \\.\Hd1\Test.txt

C:\>type \\.\Hd1\\Test.txt

Test

C:\>dir \\.\Hd1\\

 Volume in drive \\.\Hd1 has no label.

 Volume Serial Number is BA9B-99E8

 Directory of \\.\Hd1

14/02/2014 02:22 PM 7 Test.txt

 1 File(s) 7 bytes

 0 Dir(s) 0 bytes free

However, as soon as IofCallDriver() hook is removed, the same ‘dir’ command will fail, as with no hook the rootkit cannot
decrypt the scrambled volume:

C:\>dir \\.\Hd1\\

Incorrect function.

The second volume \\.\Hd2 is not mapped to a file, so when a computer is switched off, its contents is lost. Thus, it could be
used as a temporary or a cache storage. The data stored in \\.\Hd2 is encrypted the same way the first volume’s data. Both
volumes appear to be set up as FAT volumes.

An attempt to read the data from these volumes with the code below:

HANDLE hDisk = CreateFile(“\\\\.\\Hd1”,
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 0,
 NULL);
BYTE lpBuffer[16384];
DWORD dwBytes;
if (hDisk)
{
 ReadFile(hDisk, lpBuffer, 16384, &dwBytes, NULL);
 // inspect the buffer
 CloseHandle(hDisk);
}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

26

This will produce the following results:

For \\.\Hd1:

00000000 EB 00 00 00 00 00 00 00 00 00 00 00 02 04 02 00
00000010 02 00 02 00 00 F8 C8 00 20 00 02 00 01 00 00 00
00000020 FF 1F 03 00 80 00 29 E8 99 9B BA 4E 4F 20 4E 41 )....NO NA
00000030 4D 45 20 20 20 20 46 41 54 31 36 20 20 20 00 00 ME FAT16 ..
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

For \\.\Hd2:

00000000 EB 00 00 00 00 00 00 00 00 00 00 00 02 01 02 00
00000010 02 00 02 FF 7F F8 7F 00 20 00 02 00 01 00 00 00
00000020 00 00 00 00 80 00 29 E8 99 9B BA 4E 4F 20 4E 41 )....NO NA
00000030 4D 45 20 20 20 20 46 41 54 31 36 20 20 20 00 00 ME FAT16 ..
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF

The ability to keep its data on TrueCrypt-like volumes provides Snake with a powerful ability to exchange data with the
usermode DLL, as these volumes are accessible both from usermode and kernel mode.

Static analysis of the code reveals that the Snake driver uses virtual volumes to store its data and additional files on it.

For example, it stores its message queue in a file called:

\.\\Hd1\queue

The message queue indicates an asynchronous communication model between kernel mode driver and a usermode DLL,
e.g. to pass commands, configuration parameters, binary images of additional Snake components.

Other files that may also be found on the virtual volume are: klog, conlog, dump, rkng_inst.exe,

where rkng_inst.exe could be the name of the original dropper, and other log files could potentially contain executed
command outputs, intercepted keystrokes, and other output logs.

www.baesystems.com/businessdefence

64-BIT Editions of
Windows

The 64-bit version of Snake must deal with a number of
additional security protections implemented in 64-bit
editions of Microsoft Windows, the most significant
of which are kernel driver signature validation and
Kernel Patch Protection (more commonly known as
PatchGuard).

PatchGuard is a feature of 64-bit Windows which aims to
prevent modification of the Windows kernel, something
that is often performed by malware attempting to hide
itself on an infected system. Although PatchGuard is
successful at preventing kernel patching once initialised,
several published bypass approaches exist4,5. The
technique used by Snake appears to be similar to these
approaches.

The driver signing policy enforced by all 64-bit versions
of Windows from Vista onwards requires all kernel-mode
drivers to be signed with a valid digital signature. The
Snake dropper contains both 32-bit and 64-bit unsigned
drivers, and it can successfully load its unsigned 64-bit
driver on a 64-bit version of Windows XP – as driver
signing is not enforced it does not have to resort to
any tricks under this OS version. In this case, in order to
ensure the driver is loaded automatically at startup, the
dropper can install the 64-bit driver on 64-bit Windows
XP in the same way it installs a 32-bit driver on a 32-bit
version of Windows XP.

On 64-bit versions of Windows Vista and above it
behaves differently. Firstly, the 64-bit unsigned driver file
is created as usual:

%windows%\$NtUninstallQ817473$\fdisk.sys

However, the driver is not registered; what is registered
instead is the dropper itself. To do that, the dropper first
copies itself as:

%windows%\$NtUninstallQ817473$\fdisk_mon.exe

The dropper then registers itself as a service to ensure
it starts every time Windows is booted, by creating the
values:

ErrorControl = 0
Type = 16
Start = 2
ImagePath =
”%SystemRoot%\$NtUninstallQ817473$\fdisk_mon.
exe
ObjectName = ”LocalSystem”
WOW64 = 1

in the registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\Ultra3

Now comes the most interesting part: does the dropper
manage to load its 64-bit unsigned driver under 64-bit
versions of Windows Vista and later versions, such as 64-
bit Windows 7/8? The answer: Yes, it does.

Does it resort to using bootkit technology, which has
been used in the past to bypass protections to load
unsigned 64-bit drivers? The answer: No. Bootkits must
overwrite the Master Boot Record (MBR) and antivirus
products are well trained to catch that kind of bad
behavior.

The masterminds behind Snake rootkit seem to be
well aware of this so what they resorted to instead is
leveraging a vulnerability in a well-known virtualization
product called VirtualBox, a product made by Oracle
which is widely used by researchers to analyse malware.
VirtualBox driver version 1.6.2 was released in June
2, 2008. Two months later, in August 2008, security
researchers reported that its main driver component,
which is signed under the entity “innotek Gmbh”,
contained a privilege escalation vulnerability6.

In a nutshell, the VirtualBox software installs a driver
called VBoxDrv. The driver is controlled with the Input/
Ouput Control Codes (32-bit values called IOCTL) passed
along DeviceIoControl() API. One of the documented
transfer methods that the system uses to pass data
between the caller of DeviceIoControl() API and the
driver itself is called METHOD_NEITHER.

28

As per MSDN documentation7, METHOD_NEITHER is a special transfer type when Input/Output Request Packet (IRP) supplies
the user-mode virtual addresses of the input and output buffers, without validating or mapping them. It is the responsibility
of the driver to validate the addresses sent from user mode in order to make sure those addresses are valid usermode
addresses.

The source code of the vulnerable driver (shown below) demonstrates how the integer value of the rc variable is first derived
from the input parameters pDevObj (device object) and pIrp (request packet). Next, that integer value is written into the
UserBuffer - an arbitrary address, pointed by the input parameter pIrp (request packet). As there are no validations made for
the UserBuffer an attacker can craft such input parameters that will define address within kernel memory to patch and the
data to patch it with:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/**
 * Device I/O Control entry point.
 *
 * @param pDevObj Device object.
 * @param pIrp Request packet.
 */
NTSTATUS _stdcall VBoxDrvNtDeviceControl(PDEVICE_OBJECT pDevObj, PIRP pIrp)
{
 PSUPDRVDEVEXT pDevExt = (PSUPDRVDEVEXT)pDevObj->DeviceExtension;
 PIO_STACK_LOCATION pStack = IoGetCurrentIrpStackLocation(pIrp);
 PSUPDRVSESSION pSession = (PSUPDRVSESSION)pStack->FileObject->FsContext;

 ULONG ulCmd = pStack->Parameters.DeviceIoControl.IoControlCode;

 if (ulCmd == SUP_IOCTL_FAST_DO_RAW_RUN
 || ulCmd == SUP_IOCTL_FAST_DO_HWACC_RUN
 || ulCmd == SUP_IOCTL_FAST_DO_NOP)
 {
 int rc;
 ...
 rc = supdrvIOCtlFast(ulCmd, pDevExt, pSession);

 // supdrvIOCtlFast() function itself will return:
 // pDevExt->pfnVMMR0EntryFast(pSession->pVM, SUP_VMMR0_DO_NOP);
 // the function depends pDevExt and pSession, which in turn
 // are derived from the input parameters pDevObj and pIrp
 // therefore, rc value can be manipulated
 __try
 {
 // save the manipulated rc value back into
 *(int *)pIrp->UserBuffer = rc; // the input parameter (the address to patch)
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 ...
 }
 }
}

4 http://www.codeproject.com/Articles/28318/Bypassing-PatchGuard-3
5http://uninformed.org/index.cgi?v=3&a=3&p=17
6 http://www.coresecurity.com/content/virtualbox-privilege-escalation-vulnerability
7 http://msdn.microsoft.com/en-us/library/windows/hardware/ff543023(v=vs.85).aspx

www.baesystems.com/businessdefence

Now that the vulnerable driver can be used as a weapon
to patch kernel memory, all the malware needs to do is
to patch the content of the variable nt!g_CiEnabled, a
boolean variable “Code Integrity Enabled” that marks
whether the system was booted in WinPE mode.

When running in WinPE mode there is no Code Integrity
control, therefore by enabling this mode by patching
only one bit, Code Integrity verification is disabled so
that the unsigned 64-bit driver can be loaded.

This variable is used within the function
SepInitializeCodeIntegrity(), implemented within
CI.dll’s function CiInitialize() and imported by the
NT core (ntoskrnl.exe). In order to find the variable
in kernel memory, the Snake dropper loads a copy
of the NT core image (ntoskrnl.exe), locates the
import of CI.dll’s function CiInitialize(), and then
SepInitializeCodeIntegrity() within it. Then it parses the
function’s code to locate the offset of the variable.

Once located, the content of the variable nt!g_CiEnabled
is patched in kernel memory and the 64-bit unsigned
driver is loaded. This explains why Snake dropper
registers itself as a service to start each time Windows
starts: in order to install the vulnerable VBox driver
first, then pass it a malformed structure to disable Code
Integrity control with a DeviceIoControl() API call, and
finally, load the driver.

In order to be able to perform the steps above, the
dropper must first obtain Administrator privileges. It
attempts to do this by running MS09-025 and MS10-015
exploits on the target system. These exploits are bundled
within the dropper in its resource section as executable
files. Other resources embedded within the dropper
are the 32-bit and 64-bit builds of its driver, a tool for
creating NTFS file systems, and the initial message queue
file which is written into the virtual volume. The message
queue file contains configuration data and the libraries
that will be injected into usermode processes.

Usermode DLLS

The usermode DLLs injected by the kernel-mode driver
into the userland system process (e.g. explorer.exe) are:

• 32-bit Windows OS:

• rkctl_Win32.dll
• inj_snake_Win32.dll

• 64-bit Windows OS:

• rkctl_x64.dll
• inj_snake_x64.dll

The rkctl_Win32.dll/rkctl_x64.dll module uses the
following hard-coded named pipe for communications:
\\.\pipe\services_control

When running in
WinPE mode there
is no Code Integrity
control...

30

The remote commands it receives appear to be designed to control other components of Snake:

• tc_cancel
• config_read_uint32
• tr_free
• tr_alloc
• tc_send_request
• tr_write_pipe
• snake_modules_command
• t_setoptbin

The inj_snake_Win32.dll/inj_snake_x64.dll module exports 61 functions. It is designed to perform the high-level tasks such as:

• manage the configuration data (by using a queue)

• exfiltrate data by using Windows Internet (WinINet) APIs or Windows Sockets 2 (Winsock) APIs:

• communicate with the C&C server and receive commands to execute

• submit logs to the C&C server and other reports

When the DLL activates, it reads configuration parameters from the configuration queue, that the driver creates on a
virtual volume. One of the parameters defines the pipe name(s) that the DLL should use for its communications.

The remote commands received by this Snake DLL module are designed to set up various communication parameters:

• tc_free_data
• tc_get_reply
• tc_read_request_pipe
• tc_send_request_bufs
• t_close
• tc_socket
• snake_free
• snake_alloc

• http_log
• http_no_pragma_cache
• http_no_accept
• proxy_useragent
• proxy_bypass
• proxy_server
• proxy_discover
• proxy_passwd
• proxy_user
• check_inet

• redir_str
• http_max_opt
• http_option
• http_uri
• no_server_hijack
• imp_level
• net_password
• net_user
• write_peer_nfo
• read_peer_nfo

To post the data, the DLL can use the following User-Agent string “Mozilla/4.0 (compatible; MSIE 6.0)”.
It may rely on the following Internet Media types (MIME types) for data exfiltration:

• application/x-shockwave-flash
• image/pjpeg
• image/jpeg
• image/x-xbitmap

Request type it uses can either be POST of GET, and C&C server resource name is /default.asp.

• image/gif
• application/msword
• application/vnd.ms-excel
• application/vnd.ms-powerpoint

www.baesystems.com/businessdefence

Reconnaissance tool

One of the Snake components that could have been
downloaded from a remote C&C server, was identified
as a network reconnaissance tool.

When run as a command line tool, with its logic defined
with the command line switches, this tool enumerates
other network hosts and detects what Windows RPC
services are enabled at the endpoints. It carries a list
of interface identifiers associated with the named
pipes. It then uses these identifiers to write a message
to and read a message from the associated named
pipes. By knowing what RPC services are running, it can
successfully fingerprint all network hosts by mimicking
the Metasploit’s logic of OS fingerprinting via SMB.
The fingerprinting allows it to reveal the following
characteristics for each host found in the network:

• the version of the operating system

• version of the service pack

• the installed network services

The data it retrieves is encrypted and saved into a
configuration file %system%\vtmon.bin. This file is then
further encrypted with an NTL-based (Number Theory
Library) algorithm and is uploaded by the usermode-
centric Snake rootkit to the C&C server, along with
other configuration files, such as mtmon.sdb, mtmon32.
sdb, gstatsnd.bin, gstat.bin, gstat32.bin, and other log
files found in the %windows%\$NtUninstallQ[random]$
directory.

By using this function the remote attacker can identify
any potentially exploitable hosts located in the same
network as the victim. The attacker may then craft
an exploit against those hosts, possibly by using the
Metasploit framework, and then deliver the generated
shellcode back to the reconnaissance tool to be applied
against the identified hosts by running the tool with
the ‘exp_os’ switch.

If the tool successfully delivers the payload and exploits
the remote host(s), it will replicate the infection
across the network, taking control over new hosts,
thus repeating the infection cycle all over again and
spreading the infection further. Unlike traditional worm
techniques, this process is rather manual, but its danger
is in the fact that the attacker can flexibly craft new
attack methods, adjusting them to the hosts present
within the network, thus preying on the weakest (least
updated, most vulnerable) victims along its path.

Relationship to
agent .BTZ

As seen from the check-in logs found within one of the
recent samples, the time span covers almost 6 years
from January 2007 till December 2012, which is aligned
with the first reports of Agent.BTZ. It’s worth noting
that Agent.BTZ used the same XOR key for its logs as
the most recent variants:

1dM3uu4j7Fw4sjnbcwlDqet4F7JyuUi4m5Imnxl1pzx-
I6as80cbLnmz54cs5Ldn4ri3do5L6gs923HL34x2f5cvd-
0fk6c1a0s

Log files created by the latest samples of Snake,
compiled in 2013 and 2014, were successfully decrypted
with the same XOR key. Other similarities include the
usage of the virtual partition \\.\Vd1, the temporary file
named FA.tmp, usage of files named mswmpdat.tlb,
wmcache.nld, winview.ocx.

By using this function
the remote attacker
can identify any
potentially exploitable
hosts...

32

Recommendations
• Search logs for connections to Snake’s command and control servers (see Appendix A)

• Search for MD5 hashes of the known samples (see Appendix B)

• Use Indicators of Compromise for building host-based rules (see Appendix C)

• Deploy SNORT rules for network based detection of Snake (see Appendix D)

Conclusion

The cyber-espionage operation behind the Snake
rootkit is well established, lasting back to at least 2006,
and likely well-funded too. It is also sophisticated, using
complex techniques for evading host defences and
providing the attackers covert communication channels.
Toolmarks left behind by the authors ‘vlad’ & ‘gilg’,
leave tantalizing clues as to the personas behind this.

From a technical perspective, Snake demonstrates two
very different approaches to the task of building a
cyber-espionage toolkit. One approach is to delegate
the network communication engine to usermode code,
backed up by a usermode rootkit. Another approach is
to carry out all of the communications from the kernel-
mode driver, which is a very challenging task by itself.

The complexity of the usermode-centric approach is on
par with Rustock rootkit - it uses similar techniques. It’s
an old well-polished technology that evolved over the
years and demonstrated its resilience and survivability
under the stress of security counter-measures. The
complexity of the kernel-centric architecture of Snake
is quite unique. This architecture is designed to grant
Snake as much flexibility as possible. When most of the
infected hosts are cut off from the outside world, it
only needs one host to be connected online. The traffic
is then routed through that host to make external
control and data exfiltration still possible.

The presence of the reconnaissance tool in the Snake
operators’ framework suggests the existence of an
arsenal of infiltration tools, designed to compromise a
system, then find a way to replicate into other hosts,
infect them, and spread the infection even further.

As demonstrated, the backdoor commands allow Snake
to provide remote attackers with full remote access
to the compromised system. Its ability to hibernate,
staying fully inactive for a number of days, makes its
detection during that time very difficult.

The analysed code suggests that even file system and
registry operations can be delegated by an infected
module to another module in order to stay unnoticed
by behaviour analysis engines of the antivirus products,
and to overcome account restrictions of the browser
processes so that the injected module could still write
into files and into the sensitive registry hives. The logs
and dumps it creates on the hidden virtual volumes
contributes to its stealthiness too. A great deal of
attention has also been given to keep its network
communications as quiet as possible. Its ability to
generate malicious traffic whenever the user goes
online and start loading the web pages allows it to
‘blend in’ with the legitimate communications.

We expect much more will be uncovered by researchers
in the coming weeks as the capabilities of this operation
are further fleshed out. However, as we implied in the
opening section, we view this threat to be a permanent
feature of the landscape. Whether they dismantle this
toolset and start from scratch, or continue using tools
which have been exposed, remains to be seen. For their
targets though the considerable challenge of keeping
secrets safe on sensitive networks will certainly continue
for years to come.

www.baesystems.com/businessdefence

Domain IP Address Country Contact Email Nameserver

arctic-zone.bbsindex.com 124.248.207.50 HK abuse@directnic.com NS1.DTDNS.COM

cars-online.zapto.org 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

eunews-online.zapto.org 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

fifa-rules.25u.com 124.248.207.50 HK abuse@web.com NS1.CHANGEIP.ORG

forum.sytes.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

franceonline.sytes.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

freeutils.3utilities.com 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

health-everyday.faqserv.com 124.248.207.50 HK abuse@web.com NS1.CHANGEIP.ORG

nhl-blog.servegame.com 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

olympik-blog.4dq.com 124.248.207.50 HK abuse@web.com NS1.CHANGEIP.ORG

pockerroom.servebeer.com 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

pressforum.serveblog.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

scandinavia-facts.sytes.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

sportmusic.servemp3.com 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

stockholm-blog.hopto.org 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

supernews.sytes.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

sweeden-history.zapto.org 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

tiger.got-game.org 124.248.207.50 HK abuse@web.com NS1.CHANGEIP.ORG

top-facts.sytes.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

weather-online.hopto.org 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

wintersport.sytes.net 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

x-files.zapto.org 124.248.207.50 HK domains@no-ip.com NF1.NO-IP.COM

forum.4dq.com 203.117.122.51 SG abuse@web.com NS1.CHANGEIP.ORG

forum.acmetoy.com 203.117.122.51 SG abuse@web.com NS1.CHANGEIP.ORG

marketplace.servehttp.com 59.125.160.178 TW domains@no-ip.com NF1.NO-IP.COM

music-world.servemp3.com 80.152.223.171 DE domains@no-ip.com NF1.NO-IP.COM

newutils.3utilities.com 80.152.223.171 DE domains@no-ip.com NF1.NO-IP.COM

interesting-news.zapto.org 80.152.223.171 DE domains@no-ip.com NF1.NO-IP.COM

north-area.bbsindex.com abuse@directnic.com NS1.DTDNS.COM

academyawards.effers.com abuse@directnic.com NS1.DTDNS.COM

cheapflights.etowns.net abuse@directnic.com NS1.DTDNS.COM

toolsthem.xp3.biz support@freewha.com NS2.FREETZI.COM

softprog.freeoda.com support@freewha.com NS1.ORGFREE.COM

euassociate.6te.net support@freewha.com NS1.6TE.NET

euland.freevar.com support@freewha.com NS1.UEUO.COM

communityeu.xp3.biz support@freewha.com NS2.FREETZI.COM

swim.onlinewebshop.net abuse@enom.com NS1.RUNHOSTING.COM

july.mypressonline.com abuse@enom.com NS1.RUNHOSTING.COM

winter.site11.com abuse@godaddy.com NS1.000WEBHOST.COM

eu-sciffi.99k.org report@abuse.zymic.com NF1.99K.ORG

Appendix A

34

MD5 Hash File Type FileSize Compile Time Notes

Kernel-centric architecture

f4f192004df1a4723cb9a8b4a9eb2fbf 32-bit driver 206 KB 2011-06-24 07:49:41 fdisk.sys, Ultra3.sys

626576e5f0f85d77c460a322a92bb267 32-bit dropper 1,669 KB 2013-02-04 13:19:21 fdisk_mon.exe

90478f6ed92664e0a6e6a25ecfa8e395 64-bit driver 584 KB 2013-02-04 13:17:56 fdisk.sys, Ultra3.sys

1c6c857fa17ef0aa3373ff16084f2f1c 32-bit driver 219 KB 2013-02-04 13:20:00 fdisk.sys, Ultra3.sys

Usermode-centric architecture

973fce2d142e1323156ff1ad3735e50d 32-bit driver 673 KB 2013-08-29 07:34:54 msw32.sys,
cmbawt.sys

2eb233a759642abaae2e3b29b7c85b89 32-bit DLL 416 KB 2013-07-25 05:58:47 dropped DLL

Reconnaissance tool

c82c631bf739936810c0297d31b15519 32-bit exe 176 KB 2013-03-27 08:25:43 wextract.exe

Other analysed samples

f293c9640aa70b49f35627ef7fb58f15 32-bit exe 294 KB 2014-01-28 16:05:32 2014 sample

440802107441b03f09921138303ca9e9 32-bit driver 428 KB 2014-01-24 10:13:06 2014 sample

90478f6ed92664e0a6e6a25ecfa8e395 64-bit driver 584 KB 2013-05-02 00:00:00 fdisk.sys, Ultra3.sys

6406ad8833bafec59a32be842245c7dc 32-bit driver 277 KB 2013-03-29 07:51:34 Ultra3.sys,
Adaptec Windows Ultra3
Family Driver

c09fbf1f2150c1cc87c8f45bd788f91f 32-bit DLL 404 KB 2013-03-28 06:49:36 dropped DLL
mscpx32n.dll

5ce3455b85f2e8738a9aceb815b48aee 32-bit driver 280 KB 2013-03-29 07:44:26 Ultra3.sys,
Adaptec Windows Ultra3
Family Driver

b329095db961cf3b54d9acb48a3711da 32-bit DLL 412 Kb 2013-03-27 07:10:09 dropped DLL
kbdsmfno.dll

cfe0ef3d15f6a85cbd47e41340167e0b 32-bit dropper 363 KB 2012-12-18 08:22:47 mswint.exe,chset.exe

b86137fa5a232c614ec5405be4d13b37 32-bit DLL 223 KB 2012-12-18 08:22:43 libadcodec.dll

47f554745ef2a48baf3298a7aa2937e2 32-bit DLL 42 KB 2012-12-18 08:21:06 oleaut32.dll

ed785bbd156b61553aaf78b6f71fb37b 64-bit driver 435 KB 2011-06-24 07:47:59 A0009548.sys

1c18c3ef8717bb973c5091ce0bbf6428 32-bit exe 179 KB 2011-06-21 12:28:28 MSWAUDIT.EXE, utility

d814cb68bf3a1da64872007e5c4818fd 32-bit driver 279 KB 2013-03-27 07:41:56 vgppnp.sys;
umkus.sys; brikge.sys

b329095db961cf3b54d9acb48a3711da 32-bit DLL 412 Kb 2013-03-27 07:10:09 kbdsmfno.dll

cfe0ef3d15f6a85cbd47e41340167e0b 32-bit dropper 363 KB 2012-12-18 08:22:47 mswint.exe,chset.exe

b86137fa5a232c614ec5405be4d13b37 32-bit DLL 223 KB 2012-12-18 08:22:43 libadcodec.dll

47f554745ef2a48baf3298a7aa2937e2 32-bit DLL 42 KB 2012-12-18 08:21:06 oleaut32.dll

ed785bbd156b61553aaf78b6f71fb37b 64-bit driver 435 KB 2011-06-24 07:47:59 A0009548.sys

1c18c3ef8717bb973c5091ce0bbf6428 32-bit exe 179 KB 2011-06-21 12:28:28 MSWAUDIT.EXE

d814cb68bf3a1da64872007e5c4818fd 32-bit driver 279 KB 2013-03-27 07:41:56 vgppnp.sys;
umkus.sys; brikge.sys

Appendix B

www.baesystems.com/businessdefence

Location Type Data

Memory Event

\BaseNamedObjects\{B93DFED5-9A3B-459b-A617-59FD9FAD693E}

\BaseNamedObjects\shell.{F21EDC09-85D3-4eb9-915F-1AFA2FF28153}

\BaseNamedObjects\wininet_activate

Memory Device

\Device\RawDisk1

\Device\RawDisk2

\Device\vstor32

Memory Antirootkit findings

unknown pages with executable code, that can't be mapped to any driver

presence of custom interrupt 0xC3 along with multiple hooks

hidden drivers Ultra3, ~ROOT, hidden file fdisk.sys

File system Volume

\\.\Hd1

\\.\Hd2

\\.\vd1

Registry Key

HKLM\System\CurrentControlSer\Services\Ultra3

HKLM\System\CurrentControlSer\Services\~ROOT

File system File

%windows%\$NtUninstallQ[random]$\mtmon.sdb

%windows%\$NtUninstallQ[random]$\mtmon_.sdb

%windows%\$NtUninstallQ[random]$\scmp.bin

%windows%\$NtUninstallQ[random]$\ucmp.bin

%windows%\$NtUninstallQ[random]$\isuninst.bin

%windows%\$NtUninstallQ[random]$\mswmpdat.tlb

%windows%\$NtUninstallQ[random]$\wmcache.nld

%windows%\$NtUninstallQ[random]$\SPUNINST\Temp

%system%\vtmon.bin

%windows%\$NtUninstallQ817473$\hotfix.dat

%windows%\$NtUninstallQ817473$\fdisk.sys

%windows%\$NtUninstallQ817473$\fdisk_mon.exe

%windows%\$NtUninstallQ817473$\rkng_inst.exe

Memory Named Pipe

\\.\Pipe\SP[COMPUTERNAME]

\\.\Pipe\UP[COMPUTERNAME]

\\.\Pipe\isapi_http

\\.\Pipe\isapi_log

\\.\Pipe\isapi_dg

\\.\Pipe\services_control

Appendix C

36

Appendix D
Canditate SNORT rules:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:”Snake rootkit, usermode-centric encrypted command
from server”; content:”|01 00 00 00 00 00 00 00|1dM3uu4j7Fw4sjnb”; content:”HTTP/1.1 200 OK”; flow:to_client, estab-
lished; sid:1000010;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:”Snake rootkit, usermode-centric client request”; con-

tent:”/1/6b558694705129b01c0”; content:”Connection: Keep-Alive|0d 0a|”; flow:to_server,established; sid:1000011;)

www.baesystems.com/businessdefence

Copyright © BAE Systems plc 2015. All rights reserved.

BAE SYSTEMS, the BAE SYSTEMS Logo and the product names referenced herein are trademarks of BAE Systems plc. BAE Systems Applied Intelligence Limited registered in England &
Wales (No.1337451) with its registered office at Surrey Research Park, Guildford, England, GU2 7RQ. No part of this document may be copied, reproduced, adapted or redistributed in any
form or by any means without the express prior written consent of BAE Systems Applied Intelligence.

Global Headquarters
BAE Systems
Surrey Research Park
Guildford
Surrey GU2 7RQ
United Kingdom
T: +44 (0) 1483 816000

BAE Systems
265 Franklin Street
Boston
MA 02110
USA
T: +1 (617) 737 4170

BAE Systems
Level 12
20 Bridge Street
Sydney NSW 2000
Australia
T: +612 9240 4600

BAE Systems
Arjaan Office Tower
Suite 905
PO Box 500523
Dubai, U.A.E
T: +971 (0) 4 556 4700

BAE Systems
1 Raffles Place #23-03, Tower 1
Singapore 048616
Singapore
T: +65 6499 5000

Copyright © BAE Systems plc 2016. All rights reserved.

BAE SYSTEMS, the BAE SYSTEMS Logo and the product names referenced herein are trademarks of BAE Systems plc. BAE Systems Applied Intelligence Limited registered in England &
Wales (No.1337451) with its registered office at Surrey Research Park, Guildford, England, GU2 7RQ. No part of this document may be copied, reproduced, adapted or redistributed in
any form or by any means without the express prior written consent of BAE Systems Applied Intelligence.

We are BAE Systems

We help nations, governments and businesses around
the world defend themselves against cyber crime,
reduce their risk in the connected world, comply with
regulation, and transform their operations.

We do this using our unique set of solutions, systems,
experience and processes - often collecting and
analysing huge volumes of data. These, combined
with our cyber special forces - some of the most
skilled people in the world, enable us to defend
against cyber attacks, fraud and financial crime,
enable intelligence-led policing and solve complex
data problems.

We employ over 4,000 people across 18 countries in
the Americas, APAC, UK and EMEA.

Cyber Incident Response

Certified Service

Victim of a cyber attack? Contact our emergency
response team on:

US: 1 (800) 417-2155
UK: 0808 168 6647
Australia: 1800 825 411
International: +44 1483 817491
E: cyberresponse@baesystems.com

twitter.com/baesystems_ai

linkedin.com/company/baesystemsai

BAE Systems, Surrey Research Park, Guildford
Surrey, GU2 7RQ, UK

E: learn@baesystems.com | W: baesystems.com/businessdefence

